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Abstract. Abundance estimation in ecology is usually accomplished by capture–re-
capture, removal, or distance sampling methods. These may be hard to implement at large
spatial scales. In contrast, binomial mixture models enable abundance estimation without
individual identification, based simply on temporally and spatially replicated counts. Here,
we evaluate mixture models using data from the national breeding bird monitoring program
in Switzerland, where some 250 1-km2 quadrats are surveyed using the territory mapping
method three times during each breeding season. We chose eight species with contrasting
distribution (wide–narrow), abundance (high–low), and detectability (easy–difficult). Abun-
dance was modeled as a random effect with a Poisson or negative binomial distribution,
with mean affected by forest cover, elevation, and route length. Detectability was a logit-
linear function of survey date, survey date-by-elevation, and sampling effort (time per
transect unit). Resulting covariate effects and parameter estimates were consistent with
expectations. Detectability per territory (for three surveys) ranged from 0.66 to 0.94 (mean
0.84) for easy species, and from 0.16 to 0.83 (mean 0.53) for difficult species, depended
on survey effort for two easy and all four difficult species, and changed seasonally for
three easy and three difficult species. Abundance was positively related to route length in
three high-abundance and one low-abundance (one easy and three difficult) species, and
increased with forest cover in five forest species, decreased for two nonforest species, and
was unaffected for a generalist species. Abundance estimates under the most parsimonious
mixture models were between 1.1 and 8.9 (median 1.8) times greater than estimates based
on territory mapping; hence, three surveys were insufficient to detect all territories for each
species. We conclude that binomial mixture models are an important new approach for
estimating abundance corrected for detectability when only repeated-count data are avail-
able. Future developments envisioned include estimation of trend, occupancy, and total
regional abundance.
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INTRODUCTION

The study of spatial and temporal variation in abun-
dance is central to ecology (Krebs 2001). Yet, most
species are so widespread or so inconspicuous that their
abundance cannot be assessed without error, but instead
must be estimated using methods that account for de-
tectability. The estimation of abundance is of funda-
mental importance in both basic and applied ecology.
In biological monitoring programs, in particular, abun-
dance is an important state variable (Yoccoz et al. 2001,
Pollock et al. 2002). Most monitoring programs use
counts of organisms as proxies for true abundance. In
so doing, they make the implicit assumption of a pro-
portional relationship between count index and true
abundance. Detectability p of the counted objects is
assumed to be either perfect (i.e., p 5 1), or at least
its expectation is assumed to be constant across tem-

Manuscript received 15 July 2004; revised 6 October 2004;
accepted 22 October 2004; Final version received 9 December
2004. Corresponding Editor: T. R. Simons.

3 E-mail: marc.kery@vogelwarte.ch

poral or spatial dimensions to be compared. The first
assumption may be met only in exceptional cases, and
the second is at least questionable and should be eval-
uated.

Most methods to obtain detectability-corrected abun-
dance estimates involve some form of capture–recap-
ture, removal, or distance sampling (Buckland et al.
2001, Williams et al. 2002). In capture–recapture sam-
pling, information about the detectability of organisms
is obtained from recapture (or resighting) information
on individuals. In removal sampling, the frequency of
removals (or first sightings) in successive sample pe-
riods contains detectability information, whereas in
distance sampling, the distribution of detections in re-
lation to a point or transect of observation yields in-
formation on detectability. Sometimes these approach-
es may be impractical, e.g., when individual identifi-
cation is impossible, distance measurement unreliable,
or when sample sizes for individual sampling units are
small. This often has been used as justification for using
‘‘indices’’ based on counts rather than detectability-
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corrected estimates of true abundance. Raw data re-
sulting from simple count surveys are of little value
due to the ambiguity induced by imperfect detection
(e.g., Anderson 2001, Rosenstock et al. 2002).

Binomial mixture models are a class of models for
estimating and modeling both abundance and detection
probability from count data (Dodd and Dorazio 2004,
Royle 2004a). They enable detectability-corrected
abundance estimates in the absence of individual iden-
tification. The key requirement of these models is the
temporal replication of counts at a number of sample
locations. The modeling assumes that there are no
changes in abundance over the survey period (i.e., de-
mographic closure). Repeated counts within sample lo-
cation i may then be viewed as independent realizations
of a binomial random variable with parameters Ni (local
abundance) and pi (detection probability). It is further
assumed that Ni comes from some common distribution
specified by parameters to be estimated from the data.
Both Ni and pi may be modeled as functions of covar-
iates to increase precision or to investigate covariate
relationships.

Virtually all biological monitoring programs for
birds collect simple count data, and their results will
be biased to an unknown degree by heterogeneous and
imperfect detection (Pollock et al. 2002). Therefore,
mixture models seem to have considerable potential for
unbiased abundance estimation. In this paper, we eval-
uate the utility of mixture models for a large-scale
study, using data from the national monitoring program
of common breeding bird species in Switzerland
(Schmid et al. 2001, Kéry and Schmid 2004). We chose
data from 2002 for eight species with contrasting dis-
tribution, density, and detectability, to confront the
models with contrasting sample sizes, abundance, and
detectability. We compare the models for two mixture
distributions and several covariates on abundance and
detectability.

METHODS

The site-by-survey matrix in biological surveys

The data arising from many large-scale programs
designed to assess abundance can be summarized as a
species-specific site-by-survey matrix of counts C.
Columns j represent temporally repeated surveys.
Rows i represent different spatial samples, i.e., sites,
quadrats, or routes. Element cij is the number c of an-
imals counted during survey j at site i. Typically, C
will be sparse, i.e., many counts will be low or even
zero. Many rows will contain all zeroes, representing
quadrats where a species was not detected at all.

Numerical example

Study area.—We evaluated mixture models for abun-
dance estimation using the national breeding bird mon-
itoring program in Switzerland (Schmid et al. 2001).
Switzerland is a small (41 285 km2), highly mountain-

ous country in Central Europe, with elevations ranging
from 200 to 4600 m a.s.l. Median elevation of the sur-
veyed quadrats in our study was 1180 m and ranged
from 250 to 2750 m. At higher elevations, there are
virtually no breeding bird species. Forests in most parts
of the country are small and fragmented, and forest
cover averages ;30%. Most nonforested areas below
600 m in elevation are either urban or used for small-
scale, but intensive, agriculture. Human population
density and the intensity of agricultural and forest land-
use decrease with increasing elevation.

Field methods.—The Swiss monitoring program for
common breeding bird species (‘‘Monitoring Häufige
Brutvögel,’’ or MHB) was launched in 1999 by the
Swiss Ornithological Institute (Schmid et al. 2001,
Kéry and Schmid 2004). More than 250 1-km2 quadrats
are distributed in a grid sample across Switzerland.
During the breeding season (15 April–15 July), each
quadrat is surveyed three times annually by an expe-
rienced observer along a quadrat-specific route using
the territory mapping method (Bibby et al. 1992, Fews-
ter et al. 2000). Only two surveys are conducted for
;50 quadrats above the alpine tree line at elevations
greater than ;2000 m a.s.l. Routes aim to cover as
large a proportion of a quadrat as possible and, once
established, remain the same every year. During each
survey, an observer marks every visual or acoustic con-
tact with a potential breeding species on a large-scale
map and notes additional information such as sex, be-
havior, territorial conflicts, location of pairs, or simul-
taneous observations of individuals from different ter-
ritories. Date and time are also noted for each survey.
For each quadrat and year, two or three repeated ter-
ritory counts are available. Data on elevation and forest
cover were taken from databases of the Swiss Federal
Statistical Office. Previous analyses of data from the
MHB have neglected the fact that the probability of
detecting a territory will, in general, not equal 1, and
may vary across space and time (Rosenstock et al.
2002, Diefenbach et al. 2003, Sauer et al. 2003). Hence,
abundance of territories in a quadrat was estimated as
the observed number of territories. Here, we present
models that accommodate detection probability at the
level of the individual territory, and that permit de-
tectability-corrected estimates of abundance to be ob-
tained for each species and quadrat.

Study species.—We chose survey data from 2002 for
eight widely distributed species (Appendix A) with
contrasting local distribution (narrow–wide), local
abundance (low–high), and ease of detection at the lev-
el of an individual territory (easy–difficult): Mallard
(Anas platyrhynchos), Hawfinch (Coccothraustes coc-
cothraustes), Skylark (Alauda arvensis), Willow Tit
(Parus montanus), Common Buzzard (Buteo buteo),
Eurasian Jay (Garrulus glandarius), Blackbird (Turdus
merula), and Coal Tit (Parus ater). None of these spe-
cies are late-arriving migrants; all are breeding early
in the season, and most territories are occupied from
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TABLE 1. Model selection (AIC), goodness-of-fit (GoF) statistics, and estimates of abundance (N̂total and N̂quadrat) and de-
tectability for three surveys combined (P*) under binomial mixture models for eight bird species in the Swiss monitoring
program for common breeding bird species (MHB).

Species and models Distribution AIC

GoF

SSE P

Mallard
Covariate models Poi 506.8 61.53 0.006

NB 472.7 60.15 0.104
Null models Poi 631.9 86.89 ,0.001

NB 525.4 67.57 0.170

Hawfinch
Covariate models Poi 329.6 44.02 0.092

NB 317.0 37.66 0.718
Null models Poi 382.8 41.82 0.056

NB† ··· ··· ···

Skylark
Covariate models Poi 1215.6 256.48 ,0.001

NB 862.9 197.29 0.418
Null models Poi 1440.1 275.42 ,0.001

NB 900.9 201.04 0.368

Willow Tit
Covariate models Poi 1198.9 499.67 ,0.001

NB 1047.5 351.67 0.202
Null models Poi 1784.6 468.25 ,0.001

NB 1161.9 358.23 0.266

Common Buzzard
Covariate models Poi 949.2 109.86 0.560

NB 951.2 109.86 0.560
Null models Poi 1053.9 120.70 0.178

NB 1055.1 118.67 0.214

Eurasian Jay
Covariate models Poi 1536.1 423.02 0.058

NB 1521.0 376.84 0.592
Null models Poi 1777.7 437.92 ,0.001

NB 1669.6 365.75 0.426

Blackbird
Covariate models Poi 3600.5 3656.81 ,0.001

NB 3062.6 2616.78 0.716
Null models Poi 5516.0 3835.25 ,0.001

NB 3376.7 3050.23 0.416

Coal Tit
Covariate models Poi 3559.2 3952.89 ,0.001

NB† ··· ··· ···
Null models Poi 5182.8 4809.64 ,0.001

NB† ··· ··· ···

Notes: Results from the overall most parsimonious model are in boldface. We also give mean abundance estimated by the
conventional territory mapping method (N̂mapping) and the ratio N̂quadrat/N̂mapping. Also shown are AIC, GoF statistics, and estimated
total abundance N̂total 5 under the most parsimonious mixture models with (covariate models) and without covariatesRS l̂i51 i

(null models) and with Poisson (Poi) and negative binomial (NB) distribution. Further notation: SSE, sum-of-squared errors
(boostrap goodness-of-fit criterion); p, percentile of bootstrap distribution. See Appendix B for the covariates contained in
the Poisson and negative binomial mixture models with covariates.

† Model unstable; no results given.

the start of the surveying period. We a priori judged
the detectability of a territory based on our long-term
field experience. In 2002, the eight species were de-
tected at least once in between 32 (Hawfinch) and 197
1-km2 quadrats (Blackbird). The mean number of ter-
ritories detected per surveyed quadrat (n 5 238 quad-
rats), i.e., the usual density estimate based on the ter-
ritory mapping method, ranged from 0.22 (Hawfinch)
to 14.42 (Blackbird; Table 1).

Mixture models

Up to now, it was believed that abundance and de-
tection probability could not be separately estimated
from simple point count data (e.g., Anderson 2001,
2003, Rosenstock et al. 2002). However, Royle (2004a)
has developed a class of models that allows for esti-
mation of both detection probability and abundance for
the case wherein counts are replicated spatially and
temporally within the context of a demographically
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TABLE 1. Extended.

Abundance

N̂total (CI) N̂quadrat (CI) N̂mapping Ratio

Detectability

P† (SE)

91.0 (70–119) ··· ··· ··· ···
103.7 (67–152) 0.43 (0.28–0.64) 0.41 1.05 0.88 (0.036)
82.7 (66–102) ··· ··· ··· ···

112.5 (65–179) ··· ··· ··· ···

77.4 (49–154) ··· ··· ··· ···
432.8 (75–6103) 1.95 (0.32–25.64) 0.22 8.86 0.16 (0.266)
61.0 (40–95) ··· ··· ··· ···

··· ··· ··· ··· ···

256.3 (223–297) ··· ··· ··· ···
418.7 (265–824) 1.98 (1.11–3.46) 1.11 1.78 0.86 (0.040)
249.9 (219–280) ··· ··· ··· ···
406.2 (250–668) ··· ··· ··· ···

494.2 (414–616) ··· ··· ··· ···
815.9 (441–1773) 3.43 (1.94–8.67) 1.89 1.81 0.60 (0.078)
347.6 (308–390) ··· ··· ··· ···
900.0 (489–3321) ··· ··· ··· ···

202.5 (168–240) 0.85 (0.71–1.01) 0.73 1.16 0.94 (0.014)
202.5 (168–240) ··· ··· ··· ···
198.1 (164–230) ··· ··· ··· ···
201.0 (167–240) ··· ··· ··· ···

716.7 (570–987) ··· ··· ··· ···
1019.4 (688–1800) 4.28 (2.89–7.56) 1.88 2.28 0.53 (0.065)
529.7 (452–639) ··· ··· ··· ···

1079.1 (688–2159) ··· ··· ··· ···

3500.4 (3173–3931) ··· ··· ··· ···
7144.4 (5353–13 573) 30.60 (22.50–59.47) 14.42 2.12 0.66 (0.049)
2743.28 (2581–2922) ··· ··· ··· ···

13 152.2 (10 649–16 439) ··· ··· ··· ···

3189.0 (2815–3639) 13.40 (11.78–15.22) 11.21 1.20 0.83 (0.012)
··· ··· ··· ··· ···

2484 (2261–2721) ··· ··· ···
··· ··· ··· ··· ···

closed system, i.e., for surveys that yield a matrix of
counts cij described previously.

Formally, let Ni be the local abundance for quadrat
i. Demographic closure is manifest by the assumption
that successive counts over the course of the study are
binomial random variables with index Ni and detection
probability pij. The model contains a large number of
abundance ‘‘parameters’’ (one for each of a total of R
sample locations); hence, the Ni are regarded as random
effects with distribution f(Ni; u). Estimation and infer-
ence are then focused on the parameter(s) u. Although
this view of local abundance as a random effect is
motivated, in part, by the complexity of the model (i.e.,
the large number of abundance parameters), the view
of local abundance as realizations of a random variable

can also be motivated by conventional metapopulation
considerations (Royle 2004b). That is, we suppose that
there exists a population of spatially indexed popula-
tions, each with size Ni. Then, our interest is in de-
veloping a characterization (i.e., model) of the meta-
population structure. This is, in effect, a goal that fo-
cuses on the parameter(s) u.

A number of obvious choices of f are possible. Per-
haps the most natural choice is to assume that Ni has
a Poisson distribution with mean l. The Poisson dis-
tribution is the customary description of a random spa-
tial point pattern. In the case in which landscape co-
variates are available that explain variation in abun-
dance, we consider the possibility that l is site-specific,
of the following form:
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K

log(l ) 5 b 1 x b (1)Oi 0 ik k
k51

where xik is the value of the kth covariate at site i. A
natural generalization is to consider Ni to be negative
binomial random variables (e.g., Lawless 1987). In this
case, f is parameterized by an overdispersion parameter
in addition to the mean. Again, models that include
covariates may also be considered.

Detection probability may vary in response to co-
variates as well. To allow for this, we consider linear
logistic models of the form

logit(p ) 5 a 1 a xij 0 1 ij

for the case in which a single covariate, xij, exists (e.g.,
xij 5 survey duration).

Regardless of the model for N under consideration,
estimation of abundance and detection probability pa-
rameters is based on the integrated likelihood, a stan-
dard approach for estimation and inference in classical
random-effects models (e.g., Laird and Ware 1982). In
the present context, first note that, conditional on Ni,
the sampling distribution of the counts from site i is
the product binomial:

g(c z N , p) 5 Bin(c z N , p).Pi i i j i
j

Without loss of generality, we have considered here the
case where p is constant, but recognize that in most
applications some covariates thought to influence p will
be available. The marginal distribution of the counts,
integrating over the distribution of Ni, is

`

g(c z u, p) 5 Bin(c z N , p) f (N z u).O Pi i j i i[ ]N 5max c ji j ij

Regarded as a function of u and p, g(cizu, p) is the
contribution of the data from site i to the joint likeli-
hood. Thus, the joint likelihood of the data from all R
sites is the product

R

L(C z u, p) 5 g(c z u, p).P i
i51

Although this does not simplify algebraically in any
meaningful way, it is simple enough to maximize using
conventional numerical techniques in order to obtain
the maximum likelihood estimates of the model param-
eters u and p.

The maximum likelihood estimate of u can be used
to obtain an estimate of the expected number of ter-
ritories in each quadrat based on the values of quadrat-
specific covariates (Eq. 1). Royle (2004a) also de-
scribes an alternative estimator of Ni based on the pos-
terior mean of Ni given the observed counts at quadrat
i. Although this estimator based on the posterior mean
is often similar to that based on Eq. 1, it is generally
not under the negative binomial model.

Modeling strategy

We considered a Poisson or a negative binomial mix-
ture distribution for abundance and several covariates
for abundance and detectability. Due to the exceptional
elevational gradient of Switzerland, all species have a
distribution limit at some upper, and sometimes also at
a lower, elevation. Furthermore, elevation is a surrogate
for many habitat and climate covariates that influence
distribution and abundance, e.g., human population
density, agricultural land-use intensity, temperature, or
precipitation. Therefore, we used elevation as a co-
variate for abundance Ni. We considered a linear and
a quadratic elevation effect to take account of potential
maximum abundance at medium elevations. Five spe-
cies occur mostly in forests, two (Mallard and Skylark)
in open land, and one (Common Buzzard) in both. We
used percent forest cover as another habitat covariate.
Route length is not standardized and varied slightly
among quadrats, but was constant among surveys of
each quadrat. To account for variation in effective sam-
ple area resulting from variable route length, we con-
sidered route length as a covariate for abundance.

Survey duration could vary among quadrats and
among samples within each quadrat. We view survey
duration as a potential influence on detectability: a
higher proportion of available territories should be de-
tected as sampling duration increases. However, be-
cause route length varies, a more appropriate covariate
of sampling intensity is duration divided by route
length, a measure of effort per sampled area. We refer
to this covariate simply as effort. Because surveys were
conducted over a period of up to three months, we
expected considerable changes in singing behavior and
other activities that facilitate territory detection (Royle
and Nichols 2003, Selmi and Boulinier 2003). We
therefore used survey date (1 5 1 April) as another
covariate on detectability. We considered the possibil-
ity of a quadratic date effect to allow for nonlinear
change in detectability due to seasonal variation in
breeding behavior. Finally, we also fitted interaction
terms between date and elevation as a covariate for
detectability, because breeding takes place and surveys
were conducted later at higher elevations. To enhance
convergence of the numerical optimization algorithm,
all covariates were standardized: route length was log-
transformed and the remainder were transformed into
standard normal deviates by first subtracting the arith-
metic mean and then dividing by the standard devia-
tion.

In total, 120 models were fit for each species and
mixture type, containing all possible combinations of
presence and absence for each covariate. We only con-
sidered models that conform to the usual marginality
relations, e.g., no model containing an interaction with-
out all constituent main effects was fit (Nelder 1994).
We compared models using AIC and, within one mix-
ture type, using DAIC, the distance in AIC units from
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the most parsimonious model. As a rule of thumb, mod-
els with DAIC ,2 fit a data set similarly well on the
grounds of parsimony (Burnham and Anderson 1998).
With the set of five most parsimonious models for each
mixture type, we restricted discussion to those that are
within 2 AIC units from the most parsimonious model.
We called these the top models, and noted that different
model sets could be considered, or that multimodel
inference (model averaging; Buckland et al. 1997)
would also be possible.

To define a detection-bias-adjusted index for abun-
dance for the eight study species over all sampled quad-
rats in Switzerland, we considered the estimated abun-
dance aggregated over the 238 sample units, that is,
N̂total 5 N̂i where N̂i is the estimated posterior meanRSi51

number of territories in quadrat i. Uncertainty about
this summary of abundance was characterized using a
parametric bootstrap procedure (Dixon 2002). For the
negative binomial models, the resulting bootstrap dis-
tributions were highly skewed, so confidence intervals
were used to summarize uncertainty about Ntotal. For
comparison with this abundance estimate, we also give
the conventional territory mapping abundance esti-
mate, i.e., the total number of territories delimited when
combining maps from all three surveys. In some stud-
ies, no meaningful covariates may be available. Then,
a null model, with constant abundance and detectability
may be useful. For comparison, we present results for
a null model under both Poisson and negative binomial
mixture distributions.

Goodness of fit

Adequacy of the best-fitting Poisson and negative
binomial models was evaluated using a parametric
bootstrapping procedure (Dixon 2002). For this pro-
cedure, parameters were fixed at the maximum likeli-
hood estimates obtained for the model in question, and
500 replicate data sets were generated. For each rep-
licate data set, parameters were estimated and a fit sta-
tistic (sum-of-squared errors in the present case) was
computed. This collection of simulated values of the
fit statistic forms the reference distribution to which
the observed fit statistic is compared. Within this boot-
strap goodness-of-fit framework, we also generated es-
timates of Ntotal for each replicate data set in order to
characterize the sampling distribution of this statistic.
This was used for purposes of evaluating its uncer-
tainty, as described in the preceding section. Parameter
estimation and goodness-of-fit assessment in this paper
was achieved using the nlm function and our own code
in the free software package R (Ihaka and Gentleman
1996). In a Supplement, we provide R code to conduct
an example analysis of the Mallard data along with a
tutorial.

RESULTS

Model selection and goodness of fit

For six of eight species, the negative binomial dis-
tribution provided a considerably more parsimonious

description of the data than did the Poisson, and was
therefore preferred for inference (Table 1, Appendix
B). Only the Common Buzzard data showed no over-
dispersion of abundance relative to a Poisson distri-
bution. No numerical convergence could be achieved
for negative binomial models in the Coal Tit; therefore,
only results for Poisson mixtures are presented for that
species. For five species, the data did not provide suf-
ficient information for AIC to distinguish clearly be-
tween the five most parsimonious models; all were
within 2 units from the AIC best model. Parameter
estimates, model selection statistics, and mean abun-
dance per 1-km2 quadrat estimated under each of five
most parsimonious models are shown in Appendix B.

Based on a parametric bootstrap, the negative bi-
nomial model usually fit adequately when it was in-
dicated by AIC, and the corresponding Poisson model
did not fit well. For the Common Buzzard, the Poisson
mixture model did fit adequately (Table 1). For the
Hawfinch and the Eurasian Jay, the most parsimonious
Poisson model also (barely) fitted. The corresponding
null models also provided a satisfactory fit each time
when the respective covariate model also fit adequately.

Estimates of detectability and abundance

Estimates of total abundance for all 238 sampling
quadrats combined (N̂total) were higher under the neg-
ative binomial than under the best Poisson covariate
models (Table 1). Negative binomial confidence inter-
vals were much wider and highly asymmetric, indi-
cating considerable uncertainty about estimated abun-
dance. Abundance estimates under the best null models
had slightly wider confidence intervals than the cor-
responding models that contained covariates. Covariate
information thus improved the precision of abundance
estimates. Mean abundance per 1 km2 (N̂quadrat) under
the most parsimonious mixture model was between
1.05 and 8.86 (median 1.8) times greater than the con-
ventional estimate (N̂mapping) based on the territory map-
ping method (Table 1). This reflects the fact that three
surveys are not sufficient to detect all territories in each
species. Except for the Hawfinch, where this discrep-
ancy was greatest, abundance of most species was un-
derestimated by the territory mapping method in the
MHB by a factor of about 2 relative to mixture model
estimates. Estimates of detectability combined for three
surveys (P*) under the most parsimonious model
ranged from 0.66 to 0.94 (mean 0.84) for easy species,
and from 0.16 to 0.83 (mean 0.53) for those species a
priori judged to be difficult to detect (Table 1).

Covariate effects on abundance and detectability

Coefficients of the covariates present in the five most
parsimonious negative binomial and Poisson models
are shown in Appendix B. In the Mallard, abundance
declined with increasing elevation as well as with in-
creasing forest cover in all five top models. Surpris-
ingly, in two of these models, there also was a negative
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FIG. 1. Effect of route length on abundance estimates for
eight study species in the Swiss breeding bird survey based
on the most parsimonious model (Appendix B). The scale of
the vertical axis differs among species.

FIG. 2. Effect of date on per-year territory detectability
estimates for eight study species in the Swiss breeding bird
survey. Per-year detectability (the combined detectability
over three surveys) was computed as P* 5 1 2 (1 2 p)3,
where p is the per-survey detectability from the most parsi-
monious model. We use P* to illustrate how date effects
would combine if all three surveys were conducted at the
same date. Date 1 equals 1 April.

route length effect, but the most parsimonious model
did not contain this effect (Fig. 1a). Detectability de-
clined over the season (Fig. 2a), and there were also
negative date-by-elevation interactions. Detectability
was not related to survey effort in the most parsimo-
nious model (Fig. 3a).

For the Hawfinch, it was necessary to exclude from
analysis one quadrat with exceptionally high territory
counts (9–11) to achieve stable maximum likelihood
estimates. All five top models contained a negative
effect of elevation and a positive effect of forest cover.
Two models, albeit not the most parsimonious one (Fig.
1b), contained a positive effect of route length on abun-
dance. Detectability was not related to date (Fig. 2b),
but was positively related to survey effort (Fig. 3b).

In the Skylark, all five top models contained negative
effects on abundance of both elevation and forest cover.
Again, two models, albeit not the most parsimonious
one (Fig. 1c), contained a negative effect of route
length. Three of the top five models (but not the most
parsimonious, Fig. 2c) had a positive date effect and

one a date-by-elevation interaction. Detectability was
positively affected by survey effort (Fig. 3c).

In the Willow Tit, all five top models had a positive
effect of route length (Fig. 1d) and forest cover on
abundance, and highest abundance at medium eleva-
tions. For detectability, there was a negative linear ef-
fect of date in all models and, in addition, two models
contained either a quadratic effect of date (see Fig. 2d)
or a date-by-elevation interaction. Three models had a
positive effect of effort (Fig. 3d).

The Common Buzzard was the sole of eight studied
species for which the Poisson models were more par-
simonious than those with a negative binomial mixture
for abundance. All five top models had negative linear
and quadratic elevation effects on abundance. No effect
on abundance was found for route length (Fig. 1e) or
forest cover. Detectability declined during the season
(Fig. 2e) and there was also a date-by-elevation inter-
action. One among the five top models (not the most
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FIG. 3. Effect of survey effort on per-year territory de-
tectability estimates for eight study species in the Swiss
breeding bird survey computed as in Fig. 2. Effort is ex-
pressed as survey duration (in minutes) per route length (in
kilometers).

parsimonious) also contained a positive effect of effort
on detectability (Fig. 3e).

In the Eurasian Jay, only four models were within 2
AIC units of the most parsimonious model. They all
contained positive effects on abundance of route length
(Fig. 1f) and forest cover, and both linear and quadratic
negative effects of elevation. Detectability declined
over the season, with some modifications by elevation
(Fig. 2f), and was positively related to survey effort
(Fig. 3f).

In the Blackbird, the two models within 2 AIC units
of the most parsimonious model only differed by the
presence or absence of a date-by-elevation interaction.
There were positive effects of route length (Fig. 1g)
and forest cover on abundance, and negative effects of
elevation. Detectability was highest in the middle of
the season (Fig. 2g) and was positively related to sur-
vey effort (Fig. 3g).

For the Coal Tit, we were unable to obtain maximum
likelihood estimates for negative binomial model pa-
rameters; we present results from a Poisson mixture

only. The single most parsimonious model contained
effects of all covariates, and ranked 13.38 AIC units
ahead of the second best model. There were positive
effects on abundance of route length (Fig. 1h) and for-
est cover. Abundance was highest at medium eleva-
tions. Detectability declined over the season (Fig. 2h).
In addition, there were also date-by-elevation inter-
actions. Detectability was positively related to survey
effort (Fig. 3h).

DISCUSSION

We evaluated mixture models (Royle 2004a) for ob-
taining detectability-corrected estimates of abundance
at a large scale, and of covariate effects on abundance
of territories and detectability, for eight bird species
from the Swiss national breeding bird monitoring pro-
gram (MHB). We chose species with contrasting dis-
tribution, abundance, and intrinsic detectability. We
identified covariate effects and obtained estimates of
detectability and abundance that were largely consis-
tent with our expectations.

Biological observations

Mean territory detectability for three surveys com-
bined (P*) was estimated at 0.84 for easy species and
0.53 for difficult species. This means that in about two
in 10 territories for easy species, and one in two ter-
ritories for difficult species, birds were never seen or
heard during three territory mapping surveys. Factors
likely to affect detectability are bird size and habitat.
Less detectable species were smaller, on average, and
lived in denser habitats. In addition, they probably dif-
fer in behavior and perhaps territory size. The Haw-
finch is a classic example of an elusive species that
spends much time in the canopy, lacks striking vocal-
izations, and has a large home range. Consequently, its
detectability was particularly low.

As expected, we found declining detectability over
the season. This may reflect the fact that territorial
activity is greatest at the beginning of the nesting sea-
son and then gradually declines, as birds become more
involved in incubation and feeding offspring, rather
than singing and territorial defense (Selmi and Bouli-
nier 2003).

Performance evaluation of mixture models
under field conditions

Mixture models are known to yield unbiased esti-
mates of abundance and detectability with simulated
data chosen to conform to some defined distribution,
and when populations are truly closed (Royle 2004a).
In a field study, truth is unknown and there is no real
benchmark with which to compare the performance of
mixture models with that of conventional territory
mapping. Abundance estimates under mixture models
were between 1.1 and 8.9 (median 1.8) times greater
than conventional territory mapping estimates. This
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discrepancy may reflect bias of conventional methods
and/or bias of mixture models.

We base our performance evaluation of mixture mod-
els on goodness-of-fit statistics, estimates of covariate
coefficients, and of the magnitude of detectability and
abundance estimates. Each model that was selected by
AIC had an adequate goodness of fit. However, con-
fidence intervals for the negative binomial models were
wide. Where both the Poisson and the negative bino-
mial model had adequate goodness of fit, one might
estimate abundance under the Poisson model, even
when it was not preferred by AIC.

The presence of effects in the top models, and their
directions, concurred with expectations for each of the
eight species. Significant elevation effects on abun-
dance reflected the decline of abundance toward higher
elevations shown for the same species by Schmid et
al. (1998). Positive effects of route length on abun-
dance were discernible for five species. As expected,
the effect of forest cover was positive for five forest
species, negative for Mallard and Skylark and neutral
for the Common Buzzard. Detectability was higher for
easy than for difficult species, and a positive effect of
survey effort was present among the top five models
for every species. Detectability varied over the season
for six species in a direction consistent with a decline
of territorial activity over the breeding season.

Our estimates of detectability and abundance esti-
mates are hard to compare with other studies, because
most published density estimates are of unknown qual-
ity and refer to small and often high-density areas (see,
e.g., Glutz von Blotzheim and Bauer 1997). As ex-
pected, abundance estimates from mixture models were
always higher than those obtained by territory map-
ping. They do not appear to be exaggerated except at
first sight for the Hawfinch, with an estimated detect-
ability of 0.16 6 0.27 (mean 6 SE); almost nine times
more territories were estimated under the negative bi-
nomial mixture than were identified using conventional
territory mapping. However, even with 10–12 very
thorough surveys, including nest searches by specialist
observers, 22% of the pairs present may be missed
(Glutz von Blotzheim and Bauer 1997:1206–1207). Us-
ing a simple binomial argument, detectability for three
specialist surveys may be estimated at 0.34. This is
well within 1 SE of our estimate, which is moreover
based on data from a generalist survey aimed at count-
ing ;100 species. For Willow and Coal Tit, a previous
study estimated an even lower detectability for three
surveys than we did: 30% for Willow Tit and 67% for
Coal Tit (data from Blana [1978]). Three territory map-
ping surveys failed to detect about half of the territories
for three marshland species (data from Bell et al.
[1973]) and 35% for 18 woodland species (data from
Blana [1978]). Underestimation of abundance by a fac-
tor 2 then appears to be reasonable for the territory
mapping method with three surveys when detectability
is ignored.

Choice of mixture distribution

There were substantial differences in abundance es-
timates, depending on the distribution assumed for the
abundance random effect (see the last column in Ap-
pendix B); hence, the proper specification of that dis-
tribution is important for obtaining valid abundance
estimates. Negative binomial mixtures were preferred
for all except one species using information-theoretic
methods (AIC). Common Buzzard abundance appeared
to be consistent with a Poisson model at the scale of
the 1-km2 sampling units of the Swiss breeding bird
monitoring. This species has large territories and most
quadrats contain one territory at most. In contrast, all
other species appear to exhibit excess variation in abun-
dance relative to the Poisson. Bootstrap goodness-of-
fit tests were consistent with model selection results
based on AIC. Thus, both model selection and good-
ness-of-fit results indicate that abundance may be val-
idly estimated under the models selected.

Nevertheless, the negative binomial distribution may
not always be an ideal choice for representing the ov-
erdispersion in abundance relative to the Poisson. We
feel that the mean/variance relationship implied by the
negative binomial model may be extreme, and this has
an especially deleterious effect on estimation for highly
abundant species and those for which considerable var-
iation is indicated. In such cases, the model fits the
high mean and accomodates low counts by inflating the
variance, yielding a strongly right-skewed abundance
distribution that places considerable mass at excessive,
and perhaps unrealistic, values of abundance.

Other random-effects distributions may be adopted
for abundance that may prove adequate for describing
overdispersion and may provide more stable maximum
likelihood estimates than the negative binomial. We
considered finite mixtures of Poisson distributions with
some success. We also have briefly investigated the
uniform-integrated Poisson (Bhattacharya and Holla
1965) and Generalized Hermite distributions (Puig
2003), but have not developed adequate experience
with these at this time (J. A. Royle, unpublished data).
More work on comparing different kinds of mixtures
will be beneficial.

Covariate modeling

Variation in abundance may be accommodated im-
plicitly as overdispersion, such as by the negative bi-
nomial distribution, or explicitly by modeling covari-
ates into the mean. Although binomial mixture models
worked well both for species with fairly restricted range
and for those that are widespread (representing small
and large sample sizes), we encountered some numer-
ical problems for two extreme data sets (Hawfinch and
Coal Tit). With more informative explanatory vari-
ables, it is likely that improvements could be achieved.
Moreover, precision for Poisson models was much
greater than for the negative binomial models (see nar-
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rower CI values of the Poisson best model in Table 1).
Obtaining an adequately fitting Poisson model by in-
corporating informative covariates would be very ben-
eficial.

We used only a few environmental covariates that
were likely to explain variation in the abundance of
each species. Because of a representative quadrat sam-
ple in MHB, covariate modeling is not necessary for
unbiasedness, but it still improves precision of the es-
timates (Table 1). In analyses of data that do not come
from a random spatial sample (for instance, the North
American Breeding Bird Survey; Sauer et al. 2003),
covariate modeling is an attempt to correct for sample
selection bias. In other situations, covariates on abun-
dance may be chosen more specifically for just one or
a few species. More precise abundance estimates may
be possible for species about which more is known
about the factors governing their occurrence and abun-
dance.

The choice of which and how many covariates to
introduce in an analysis depends on the goal of the
analysis. For the sake of simplicity and comparability,
complex covariate modeling may not be useful in large-
scale multispecies studies. In this case, even null mod-
els may be useful (Table 1). In contrast, in single-spe-
cies studies, reasonable gains in precision may be
achievable at little cost when useful covariate infor-
mation is used. In addition, extensive covariate mod-
eling is more likely in studies that test for habitat re-
lationships with abundance, for example.

Abundance estimates under different covariate mod-
els were fairly similar in our study (Appendix B).
Where this is not the case, inference may be based on
model averaging (Buckland et al. 1997) to properly
account for model uncertainty.

Design issues

Detectability was ,1 for all eight study species in
a monitoring program based on the territory mapping
method. In addition, detectability was also heteroge-
neous over time (date) and space (date-by-elevation
interaction). Two key assumptions of conventional
monitoring programs were clearly violated: that de-
tectability is perfect, or at least that its average is con-
stant over time and space. This has also been found by
previous studies (e.g., Boulinier et al. 1998, Diefenbach
et al. 2003, Selmi and Boulinier 2003). Barring double-
counts, it means that abundance of all species will be
underestimated systematically unless detectability is
accounted for. Furthermore, estimates of relative abun-
dance over time (trends) or space (when comparing
areas) may be biased in studies that use raw counts
instead of detectability-corrected estimates. This may
not apply to local, intensive studies using territory
mapping, when at just a few small sites, many more
surveys (e.g., 8–15, Bell et al. 1973, Svensson 1978)
are usually conducted in a breeding season. In excep-
tional cases, it may then be possible locally to truly

census a species, i.e., to detect every territory. For
large-scale programs, however, this is unlikely ever to
be the case, because limited resources must be distrib-
uted among many sites.

There were clear relationships between route length
and abundance, and between survey effort and detect-
ability. These are nuisance variables that may bias es-
timates when not accounted for. They can be eliminated
in a statistical way by covariate modeling, but it may
be preferable to reduce their effects by partial stan-
dardization at the design stage of a monitoring pro-
gram. However, large-scale monitoring programs may
depend on the work from hundreds of volunteers, and
participation may be impaired by the imposition of
stricter field protocols. There is a tension between rigor
of design and number of available volunteers. To
achieve greater sampling coverage in space and time,
some lack of standardization may have to be accepted
(but see Sauer et al. 2003). Further factors limiting the
opportunity for standardization may be difficult on
mountainous terrain such as in Switzerland, and with
different optimal route lengths for different species.
Therefore, covariate modeling may be an efficient rem-
edy for nuisance variables.

For Mallard and Skylark, there were surprising neg-
ative effects of route length on abundance in some of
the five top models (albeit not in the most parsimonious
one). This counterintuitive result may stem from the
fact that, in quadrats with good Mallard or Skylark
habitat, shorter routes were chosen by field workers.
More wetlands and open water may mean more Mal-
lards, but perhaps also may reduce the accessibility of
a quadrat. Skylarks attain highest densities in open
farmland quadrats that are easy to survey and where
observers select shorter than average routes. Our co-
variates may not be independent from hidden habitat
variables. As a hypothetical example, different detect-
ability of a species in different habitat might show up
as an effect of survey effort on detectability in our
analysis, when, in fact, walking speeds are affected by
the same habitat types. This is a well-known compli-
cation for the causal interpretation of correlations.

For individual species, it would be possible to com-
pute the optimal timing of a survey, i.e., when detect-
ability is greatest. In most of the species that we ex-
amined, there was a monotonous decline in detect-
ability over the season. However, there might be more
well-defined optima in detectability for migratory spe-
cies with a peak later in the season. Such information
may be interesting for planning more focused surveys.
In a multispecies study such as the MHB, detection of
;100 species would need to be optimized, there are
early and late nesters, and there may be less opportunity
to tune the design to a particular species.

In our study, the closure assumption was probably
not violated because we selected species whose breed-
ing populations are present over the entire survey pe-
riod. In general, however, the closure assumption may
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be critical for successful application of mixture models
for counts. For migratory species, for instance, it might
be fulfilled by deleting the data for those surveys that
were conducted when a population was still arriving.

In this paper, we use count data to derive detect-
ability-corrected abundance estimates. Arguably,
counts provide less information on abundance and de-
tectability than would data from a comparable design
that also collects information on identity of individual
territories or even birds. Hence, identity data ought to
be collected whenever possible. However, especially at
high densities, the identity of a territory or a bird might
be difficult to ascertain without marking one of the
territory owners, and this would be prohibitive at larger
scales. Hence, we envision that, especially for high-
density situations, mixture models based on counts are
very competitive compared to other rigorous methods
of abundance estimation. Examples might be counts of
waterfowl or of common mammals such as hares.

Future developments

A key interest in monitoring lies in detecting tem-
poral change in abundance (Dixon et al. 1998, Pollock
et al. 2002). The current mixture model can be used
with year as a factor (e.g., Dodd and Dorazio 2004)
and the equality of abundance in certain years can be
tested. Alternatively, annual change in abundance
could be directly incorporated into the model as a pa-
rameter to be estimated, for instance as in Nit ; Poisson
(lit), with log(lit) 5 a 1 b 3 t, where Nit is abundance
for survey i in year t, lit is the estimated mean abun-
dance for survey i in year t, t is a covariate representing
time, and a and b are the intercept and slope parameter,
respectively, of a linear trend in abundance. A com-
parison between two models with b 5 0 and b ± 0
represents a test for a significant trend. Accommodating
trend as a parameter allows one to model it directly as
a function of covariates, e.g., to test for habitat-specific
or regional differences in trends. In addition, we are
investigating open metapopulation models for species
with imperfect detectability, where variation in abun-
dance is partitioned into metapopulation dynamic com-
ponents of extinction and colonization.

Occupancy is a special case of abundance; a species
occurs at each site i where Ni . 0 (He and Gaston
2003, Royle and Nichols 2003). A characterization of
the distribution of abundance is sufficient to also es-
timate occupancy. We show elsewhere (Royle et al.
2005) how mixture models for abundance allow esti-
mates of the probability of occupancy. These estimates
are free of the distorting effects of detectability, unlike
conventional generalized linear model approaches
(e.g., logistic regression), and they do not require re-
strictive assumptions about equality of abundance
across sampling units, unlike the models of MacKenzie
et al. (2002). Mapping a covariate model function for
abundance or occupancy onto a wider area enables
maps of potential abundance or range to be produced

(Royle et al. 2005). Integrating the volume under such
an abundance distribution yields an estimate of the total
population size over a larger area.

Conclusion

Mixture models have performed well for estimation
of avian abundance on a large domain in this study.
They hold promise for abundance estimation at large
spatial scales because they require data that are easier
to collect than those for previous methods that accom-
modate detectability. Key to their application is rep-
lication of counts in both time and space, and an ad-
equate specification of the random-effects distribution
of abundance. How counts are obtained is unimportant;
counts of nests, wintering waterbirds, singing birds at
point locations (point counts), or counts along tran-
sects, as well as the number of bird or plant species at
repeated locations in species richness applications
might all be used. They may be particularly useful
when the counted objects occur at high densities. Fu-
ture directions of research will include the direct in-
corporation of time trends into the modeling, the com-
bined modeling of abundance and distribution, good-
ness-of-fit tests, and additional useful random-effects
distributions for abundance.
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occurrence and abundance of species with imperfect de-
tection. Oikos, in press.

Sauer, J. R., W. A. Link, and J. D. Nichols. 2003. Estimation
of change in populations and communities from monitoring
survey data. Pages 227–253 in D. E. Busch and J. C. Trex-
ler, editors. Monitoring ecosystems: interdisciplinary ap-
proaches for evaluating ecoregional initiatives. Island
Press, Washington, D.C., USA.

Schmid, H., M. Burkhardt, V. Keller, P. Knaus, B. Volet, and
N. Zbinden. 2001. Die Entwicklung der Vogelwelt in der
Schweiz. Avifauna Report Sempach 1, Annex. Schweiz-
erische Vogelwarte. Sempach, Switzerland.

Schmid, H., R. Luder, B. Naef-Daenzer, R. Graf, and N. Zbin-
den. 1998. Schweizer Brutvogelatlas. Verbreitung der
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APPENDIX A

A table showing occupancy and preferred habitat of the eight study species is available in ESA’s Electronic Data Archive:
Ecological Archives A015-040-A1.

APPENDIX B

A table showing parameter estimates, number of parameters, model selection statistics (AIC, DAIC), and estimated mean
abundance per surveyed 1-km2 quadrat under the five most parsimonious models with a negative binomial or Poisson mixture
distribution of abundance is available in ESA’s Electronic Data Archive: Ecological Archives A015-040-A2.

SUPPLEMENT

Two files for fitting binomial mixture models as described originally by Royle (2004a) are available in ESA’s Electronic
Data Archive: Ecological Archives A015-040-S1.


